
Introduction to GTK+

Ted Gould
PLUG Developers Meeting

August 4th, 2003

http:/ / gould .cx/ ted / projects/ gtkintro/

Presentation Outline

● GTK+ and helper libraries

● Glib Object Model

● GTK+ Programming

<break>

● GNOME Libraries

● References

GTK+ Overview

● Developed to move The GIMP off of Motif

● Realized that C could be object oriented

● Created in C for compatibility (every modern
language can load C libraries)

● Large number of bind ings (Effiel, Java,
Ruby...)

● GUI Interface designer: Glade

● License: LGPL

● Used in the GNOME project (and many
others)

Helping out GTK+

Pango Text Rendering Library

● Greek 'Pan' for 'All' and Japanese 'Go' for
language

● Internationalized text rendering library – not
actually GTK+ specific, but used by GTK+

● Uses Unicode internally

● Focus on 'correct' rendering of anything

● Font system and toolkit independent

● For modern Linux uses XFT

Accessibility Toolkit

● Hard to find documentation on :)

● Allows GTK (and other) programs to be used
by screen readers, magnifiers, etc.

● Developed by the developers that built the
accessibility for Java

● Required for many corporations (especially
gov't) to use software

GDK: Gimp Display Kit

● Library to perform the actual rendering to
the d isplay

● Abstracts out the d isplay so that it can be X11
or Win32 or Cocoa or whatever

● Also provides some pixmap functions if you
need those (not covered today)

Glib C Utility Library

● Makes C 'easy to use'

● Provides much of the functionality that is
replicated in many programs

● Has things like: memory allocation, linked
lists, hash tables, strings and more

● One key feature: basis of object oriented C
with GObject hierarchy

Glib Objects

Glib: Object System Introduction
(1/ 2)

● Object oriented programming is about
thinking about 'objects' of data with
associated functions

● Many languages provide syntactic assistance
for this type of programming (C++, Java,
etc.)

● Object Oriented programming allows for
intellectual separation of code into d igestible
components

● Glib accomplishes this with C by using
structures and macros

Glib: Object System Introduction
(2/ 2)

● Objects are reference counted

● Have associated signals which are created on
construction

● Inherit properties from parent class

Glib: Object Structure

● First element is the parent

● Contains values that are relevant to this
object

● Class structure contains functions that
operate on this object

struct MyObject {
GObject parent;
int myval;

};

struct MyObjectClass {
GObjectClass parent;
void (*SetMyVal) (int);

};

Glib: Object Macros

● Macros are used for verifying the object type
and casting. Common implementation
below:

#define MY_OBJECT_TYPE (my_object_get_type())

#define MY_OBJECT(obj) (G_TYPE_CHECK_INSTANCE_CAST
((obj), MY_OBJECT_TYPE, my_object)

#define MY_IS_OBJECT(obj) (G_TYPE_CHECK_INSTANCE_TYPE
((obj), MY_OBJECT_TYPE)

Glib: Creating a type

● The get_type function registers a type with Glib,
and if it's already registered , just returns it

GType my_object_get_type (void) {
static GType type = 0;
if (type == 0) {
 GTypeInfo info = {
 sizeof(MyObjectClass), NULL, NULL,
 (GClassInitFunc)my_object_class_init,
 NULL, NULL, sizeof(MyObject), 16,
 (GInstanceInitFunc)my_object_init};

 type = g_type_register_static(
 G_TYPE_OBJECT, “MyObject”, &info, 0);}
return type;}

GObject creation and destruction

● Glib provides space for an initialization
function

– This function allocates all memory for the
instance

– Sets all values to a benign state

● And a destruction function for the object

– Actually several layers of destruction

– Free's all memory

– Gets called when the reference count goes to
zero

Glib: Object Creation

● Now everything is really easy ^ _^

● One function call to create object
g_type_new(MY_OBJECT_TYPE, NULL)

● Calls

– My Object Instance Initialization

– If the class hasn't been initialized it will do that

– GObject Instance Initialization

● Many objects also provide a: my_object_new()

Other Glib Handy things

● Standard ized types (gint, guint, gint32...)

● Singly linked lists, doubly linked lists

● Hash tables

● Heaps and memory allocation

● Dynamic module loading

Programming GTK+

Basic GTK+ Program

#include <gtk/gtk.h>

int main(int argc, char * argv[]) {
 GtkWidget * window;

 gtk_init(&argc, &argv);

 window = gtk_window_new(
 GTK_WINDOW_TOPLEVEL);
 gtk_widget_show (window);

 gtk_main();

 return 0;
}

Initialize GTK+

Create new object

GTK+ main loop

GTK+ Main Loop

● Most GTK+ programs run with a single line
of execution

● First, this line of execution sets everything up
(builds windows, open network
connections...)

● Then, it needs to wait for user interaction

● GTK+ main loop waits for the interaction
and sends the events on to event handlers

● Also can include things like timers

Program with an event

static gboolean del_ev (GtkWidget * widget,
 GdkEvent * event, gpointer data) {
g_print (“delete event occured\n”);
return TRUE; /* ERROR */ }

static void destroy (GtkWidget * widget,
 gpointer data) {
gtk_main_quit(); }

int main() {
....
g_signal_connect(G_OBJECT(window),
 “delete_event”, G_CALLBACK(del_ev), NULL);
g_signal_connect(G_OBJECT(window), “destroy”
 G_CALLBACK(destroy), NULL);
gtk_main(); }

Connects events to functions

Functions
that get
called

when the
event

hap pens

Creating a Button

static void hello (GtkWidget *widget,
 gpointer data) {
g_print(“Hello World\n”);
}

static void build_button (GtkWidget *window){
GtkWidget * button;

button = gtk_button_new_with_label(“Hello”);
g_signal_connect(G_OBJECT(button),
 “clicked”, G_CALLBACK(hello), NULL);
gtk_container_add(GTK_CONTAINER(window),
 button);
gtk_widget_show(button);
return;
}

Create Button

Add button to window

Called on a
click of the button

Containers in GTK+

● To put multiple objects in a window a
container object is required

● Basic Containers: Horizontal box, Vertical
Box and a Table

● Boxes can be packed from the beginning or
end

● Tables are done by coord inates

● Lots of flexibility -- leads to some confusion

Layout of Boxes

● Three values being changed

– Homogeneous: make the box take all available
space (force expand for all objects)

– Expand: make objects large enough to use all the
space allocated to the box

– Fill: packed object is allocated space instead of
buffer

Spacing the Boxes

● Two forms of spacing (box vs. object)

– Spacing (box): p laced between objects in the box

– Padding (object): added on either side of the
object in the box

Packing Using Tables

● Objects in tables get assigned X and Y ranges
gtk_table_attach_defaults(GTK_TABLE(table),
 button1, 0, 1, 0, 1);

gtk_table_attach_defaults(GTK_TABLE(table),
 button2, 1, 2, 0, 1);

gtk_table_attach_defaults(GTK_TABLE(table),
 quit_button, 0, 2, 1, 2);

Different Types of Buttons

● Normal buttons (we've done these)

● Toggle Buttons

● Check boxes

● Radio Buttons

● Buttons with graphics (using hbox from
before!)

Toggle Buttons

● Toggle buttons preserve their state

● Create: gtk_toggle_button_new_with_label()

● Set State: gtk_toggle_button_set_active(but,
TRUE)

● Callback function: (typical structure)
void callback (GtkWidget *widget, gpointer data) {
if (gtk_toggle_button_get_active(
 GTK_TOGGLE_BUTTON(widget))) {
 /* button down */
} else {
 /* button up */
}}

Check Box Buttons

● These are actually subclasses of the toggle
buttons! Same functions apply. (Isn't
subclassing wonderful)

● Create: gtk_check_button_new_with_label()

Radio Buttons

● Radio buttons need to come in sets (so that
only one can be active at a time)

● Create: GtkWidget *gtk_radio_button_new
 (GSList * group)

● To get a group: GSList *
 gtk_radio_button_get_group
 (GtkRadioButton * widget)

● To create a group pass NULL to first one
● On selection two events are sent:

depressed then pressed

Graphic Button (using an hbox)
GtkWidget *box, *label, *image, *button;
button = gtk_button_new();
box = gtk_hbox_new(FALSE, 0);
image = gtk_image_new_from_file(“file.xpm”);
label = gtk_label_new(“cool button”);
gtk_box_pack_start(GTK_BOX(box), image,
 FALSE, FALSE, 3);
gtk_box_pack_start(GTK_BOX(box), label,
 FALSE, FALSE, 3);
gtk_container_add(GTK_CONTAINER(button),
 box);
gtk_widget_show(box);
gtk_widget_show(label);
gtk_widget_show(image);
gtk_widget_show(button);

Button Object Hierarchy

● GObject

– GtkObject
● GtkWidget

– GtkContainer
● GtkBin

● GtkButton
● GtkToggleButton

● GtkCheckButton
● GtkRadioButton

● Small part of the overall GTK+ object
hierarchy

● All functions of superclass available on
object

Using Menus

● Menus can be packed in almost any widget,
but they only really make sense in windows

● There are items and shells - shells are lists of
items

● Submenus are then created by associating a
shell with an item

● Easy to do with ItemFactory (not shown
here)

Menu Example
 menu = gtk_menu_new ();
menuitem = gtk_menu_item_new_with_label(“Hey”);
gtk_menu_shell_append(
 GTK_MENU_SHELL(menu), menuitem);
root_m = gtk_menu_item_new_with_label(“Root”);
gtk_menu_item_set_submenu(
 GTK_MENU_ITEM(root_m), menu);
vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add(GTK_CONTAINER(window), vbox);
menu_bar = gtk_menu_bar_new();
gtk_box_pack_start(GTK_BOX(vbox), menu_bar,
 FALSE, FALSE, 2);
gtk_menu_shell_append(GTK_MENU_SHELL(menu_bar),
 root_m);
gtk_widget_show({menu|menuitem|root_m|menu_bar|
 vbox|window});

Other things in GTK+

● Scrolled Windows

● Arrows

● Dials and ad justments

● Calendar

● Dialogs

● Text entry boxes

Break Time!

GNOME Libraries of Interest

● ORBit

● Bonobo

● GNOME VFS

● GConf

● Glade

● GStreamer

ORBit Overview

● Designed as a fast CORBA implementation

● Provides a C language bind ing (unusual)

● Provides the basis for Bonobo, Panel, Gconf,
CDDB lookup....

● Supposedly as fast as two function calls!

● Allows GNOME applications to be machine
independent and still share data

Bonobo Overview

● Named after the Bonobo monkey

● Provides Object Embedding and standard
interfaces (similar to MS OLE)

● Common interfaces for objects that are
machine and location independent

● Simple interfaces that all inherit from
Bonobo::Unknown

● Provides and activation framework that is
based on you DISPLAY variable

GNOME VFS Overview

● Provides a 'filesystem' interface with
standard POSIX calls (prefaced by
gnome_vfs)

● Allows for d ifferent modules:

– burn:/ /

– nfs:/ /

– smb:/ /

– fonts:/ /

● Embedding in all applications allows any
application to open any file viewable in
Nautilus

GConf Overview

● Configuration framework similar to
Microsoft's Registry (but better, a lot better)

● Global set of defaults

● Per-user settings in $(HOME)/ .gconf

● Allows for schema definitions of variables

● Allows for instant notification of changes for
instant apply of variables

● Will be part of the GNOME 2.6 lock down

Glade/ libglade Overview

● Glade is a graphical GUI designer

● Saves design as a XML file

● Can be used to create source code (many
lang.)

● Or... can be loaded dynamically using
libglade

● Provides a quick and simple way to build
GUIs

GStreamer Overview

● Streaming multimedia framework

● Allows for higher level applications to worry
about what they really want to do ^ _^

● Supports MPEG, MP3, Ogg, Divx, SWF....

● Sources can be any GNOME VFS source
(including Internet rad io)

References

● GTK site: http:/ / gtk.org/

● GTK tutorial: http:/ / gtk.org/ tutorial/

● GNOME Developer: http:
/ / developer.gnome.org/

● Gstreamer: http:/ / gstreamer.org

● Pango: http:/ / pango.org

● This presentation:
 http:/ / gould .cx/ ted / projects/
gtkintro

